First Order Recurrent Neural Networks Learn To Predict A Mildly Context-Sensitive Language

نویسندگان

  • Stephan K. Chalup
  • Alan D. Blair
چکیده

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Incremental training of first order recurrent neural networks to predict a context-sensitive language

In recent years it has been shown that first order recurrent neural networks trained by gradient-descent can learn not only regular but also simple context-free and context-sensitive languages. However, the success rate was generally low and severe instability issues were encountered. The present study examines the hypothesis that a combination of evolutionary hill climbing with incremental lea...

متن کامل

Software for Analysing Recurrent Neural Nets That Learn to Predict Non-regular Languages

Training first-order recurrent neural networks to predict symbol sequences from context-free or context-sensitive languages is known as a hard task. A prototype software system has been implemented that can train these networks and evaluate performance after training. A special version of the (1+1)–ES algorithm is employed that allows both incremental and non-incremental training. The system pr...

متن کامل

LSTM recurrent networks learn simple context-free and context-sensitive languages

Previous work on learning regular languages from exemplary training sequences showed that long short-term memory (LSTM) outperforms traditional recurrent neural networks (RNNs). We demonstrate LSTMs superior performance on context-free language benchmarks for RNNs, and show that it works even better than previous hardwired or highly specialized architectures. To the best of our knowledge, LSTM ...

متن کامل

Recurrent Neural Networks Can Learn to Implement Symbol-Sensitive Counting

Recently researchers have derived formal complexity analysis of analog computation in the setting of discrete-time dynamical systems. As an empirical constrast, training recurrent neural networks (RNNs) produces self -organized systems that are realizations of analog mechanisms. Previous work showed that a RNN can learn to process a simple context-free language (CFL) by counting. Herein, we ext...

متن کامل

Context-free and context-sensitive dynamics in recurrent neural networks

Continuous-valued recurrent neural networks can learn mechanisms for processing context-free languages. The dynamics of such networks is usually based on damped oscillation around fixed points in state space and requires that the dynamical components are arranged in certain ways. It is shown that qualitatively similar dynamics with similar constraints hold for abc, a context-sensitive language....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000